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Re-Entry Vehicle Base Pressure and
Heat-Transfer Measurements at

M^ - 18

BRUCE M. BULMER*
Sandia Laboratories, Albuquerque, N.M.

Nomenclature
h — static enthalpy
H =• total enthalpy
M = Mach number
Nu — Nusselt number
p — static pressure
Pr = Prandtl number
q = heat flux
r — base coordinate measured from base outer edge
R = base coordinate measured from base centerline
RB, RN = base and nose radius, respectively
RK/RB — bluntness ratio
Re = Reynolds number
St — Stanton number
V = velocity
y = ratio of specific heats
6C = cone half-angle
p = static density

Subscripts
b = base or outer base condition
e = local cone (boundary-layer edge) condition
L — based on axial length of cone
SL = based on wetted length of cone
w = wall condition
oo = freestream condition

H Introduction
YPERSONIC near-wake studies often utilize base
pressure1"4 and base heat-transfer5'6 data derived from

full-scale flight tests to compare with analytical and experimental
results. Base pressure estimates are important, for example, in
near-wake flowfield analyses and drag predictions, while heat-
transfer calculations are necessary to define afterbody thermal
protection requirements. In this Note, additional flight-test base
pressure and heat-transfer results are presented for a slender
cone; data are limited to pressure measurements in laminar
flow and heat-transfer measurements in turbulent flow condi-
tions. Data analyses include correlation with flight-test data
and comparison with near-wake theory. Comparisons of the
present results with published data correlations emphasize the
Reynolds-number dependence of laminar base pressure and the
various factors that influence turbulent base heating in hyper-
sonic flow.

Re-Entry Vehicle and Instrumentation
The flight configuration was a slender flat-based cone with

Oc = 9° and RN/RB = 0.061. For that portion of the flight for
which laminar data are presented, the Mach number was
essentially constant at MCJC, % 18; the Mach number was, in
general, variable during the turbulent portion of the flight.
Freestream conditions were based on the calculated post-flight
trajectory, and the computed local cone conditions (at the
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Fig. 1 Base pressure data.

boundary-layer edge on the frustum immediately preceding the
base) included nose-bluntness and real-gas effects.

Base instrumentation included a pressure transducer located
near the base centerline (R/RB = 0.1) and a calorimeter near
the edge of the base (R/RB = 0.8). The pressure transducer
was a variable-reluctance type with 0-1 psia range output
telemetered at 15 samples/sec. Pressure time lag effects were
neglected because a short pneumatic system (tube length/port
diam. ratio of 40) was used. The asymptotic calorimeter had
0-30 Btu/ft2—sec range output telemetered at 15 samples/sec
and was mounted flush with the base cover surface to insure
data accuracy.

Results and Discussion
Both pressure and heat-transfer data are presented in terms of

Reynolds number in Figs. 1 and 2. Measured base pressures
are normalized by freestream static pressure, and the base heat-
flux data are nondimensionalized as Stanton number. Un-
certainty limits are indicated for each set of data. The base
pressure results correspond to absolute pressure levels exceeding
2% of the full-scale transducer output, and the heat-transfer
data exceed 10% of full scale.

Base pressure analysis
Base pressure data in Fig. 1 reveal the expected dependence

on Reynolds number for Re^^L = 1 x 106 to 5 x 107 in laminar
flow. Comparison with flight-test data for slender cones from
Cassanto,1 Ohrenberger and Baum,2 and Batt3 (Fig. 3) indicates
a consistent variation with Reynolds number for M^ = 18-21,
despite differences in external configuration and base radial
location. This data correlation supports Batt's conclusion that
Pb/Pcc and Re^,L represent proper scaling parameters for slender
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Fig. 2 Base heat-transfer data.
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Fig. 3 Laminar hypersonic flight-test base pressure data for slender
cones.
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Fig. 5 Comparison of base pressure data and near-wake theory.

hypersonic cones. The radial base pressure gradient is also
evident in Fig. 3; at low Reynolds numbers, the data level for
the centerline (R/RB = 0.0 and 0.1) is generally above that for
R/RB = 0.54 and 0.66, while the data band for R/RB = 0.0 and
0.36 overlaps both regions.

In Figs. 4 and 5, the present data are compared with base
pressure correlations and theoretical near-wake results. Fair
agreement (particularly in slope) is observed in Fig. 4 with a
previous data correlation4 using local parameters from the
Reeves and Buss theory.7 An additional comparison of the
Reynolds-number slope is provided (Fig. 5) with numerical
solutions from Ohrenberger and Baum2'8 for a cold-wall 8°
cone at MOO = 21.t The slope indicated by the present data is in
close agreement with these theoretical results and with the —0.4
slope derived from Fig. 4 for a sharp cone at constant M^.

Base heat-transfer analysis
Heat-transfer data in Fig. 2 correspond to fully turbulent

conditions over the -vehicle (turbulent flow was verified by
various onboard thermal instrumentation). These data indicate
large increases in Stanton number with decreasing Reynolds
number and reflect the change in the base pressure ratio with
decreasing Mach number.6
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Fig. 6 Comparison of base heat-transfer data and correlation.
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Fig. 4 Comparison of base pressure data and correlation using local
parameters from the Reeves and Buss theory.

t Ideal gas solutions8 (dash line), depicting the rate of change of
Pb/Poo with Re^ L, were shifted at constant slope to correspond with
the near-wake solution2 at Re^,L = 4 x 106.

For the present analysis, the data were reduced in terms of the
Nusselt and Reynolds number ratios described in Ref. 6. The
outer base flow properties were evaluated outside of the dividing
streamline by expanding the local cone conditions to the
estimated base pressure at the calorimeter location (determined
from a turbulent base pressure correlation at R/RB = 0.8 for
identical vehicles).

Results of this analysis are compared with the previous
heat-transfer correlation in Fig. 6. Note that the base Nusselt
and Reynolds numbers include the radial base heat-transfer
gradient5'6'9 by incorporating the actual calorimeter location
measured from the base outer edge. The present data clearly
reveal the influence of both the radial gradient and the local
cone flowfield on turbulent base heat transfer. In addition, the
large increase in the Nusselt number ratio represented by these
data is indicative of the base pressure variation with Mach
number which affects the Reynolds number ratio directly.
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Quasicoordinate Equations for
Flexible Spacecraft

PETER W. LIKINS*
University of California, Los Angeles, Calif.

Introduction

THE purpose of this Note is to quash the quasicoordinate
controversy. For those with the responsibility for developing

simulation capabilities for spacecraft of increasing flexibility and
dynamic complexity, with increasingly stringent pointing require-
ments, and with the increasing importance of cost effectiveness
calling for dramatic improvements in computational efficiency,
the stories that circulate in technical discussions over the promise
of the quasicoordinate approach are seductive indeed, and
worthy of investigation. This Note describes the results of one
such investigation, which culminated in the following
proposition.

Proposition
Applying Euler's rotational equation in the vector form M = H

to any material continuum, where M is the moment of external
forces about the system mass center and H is the inertial time
derivative of the system angular momentum about the system mass
center, and recording scalar equations for an orthogonal vector
basis fixed in any reference frame f in which the system mass
center is fixed, including the inertial angular velocity co off among
the variables, produces the same three equations of motion that
emerge from Lagrange's quasicoordinate formulation, with the
scalar components of co for a vector basis fixed in f chosen as
the quasicoordinate derivatives.

The validity of this proposition in application to a single
rigid body is well known,1'2 but its general applicability does
not appear to have been demonstrated. The importance of this
proposition lies not in what it tells us to do in order to improve
our spacecraft simulation programs, but in what it tells us not to
do; if we are already in possession of a system of equatons or a
simulation program based on a Newton-Euler formulation, we
should not make the investment required to obtain a new set of
equations or a new computer program based on a quasi-
coordinate formulation, and conversely.

Theoretical Background
Although Whittaker1 tells us that particular cases of the quasi-

coordinate equations were known to Lagrange and Euler, and that
the general form is due to Boltzmann (1902) and Hamel (1904),
still the use of quasicoordinates is not widespread. The so-called
Lagrangian quasicoordinate equationst are included in recent
books,2 and modern variants of the quasicoordinate equations
have been advanced,3 but still the concept remains on the edge of
memory for most dynamicists, and genuinely familiar to very
few. The only application of quasicoordinates to flexible space-
craft in the literature is the interesting work of Bodley and
Park,4 in which Lagrange's quasicoordinate equations are fore-
gone in favor of a direct D'Alembert approach employing
quasicoordinates.

Lagrange's equations for generalized coordinates qlt...,qv,
appear in their most general form as the matrix equations

(d/dt)(T,t)-T,q = Q-ATl (1)
in which T is the kinetic energy expressed in terms of the
scalars 4 i , . . . , g v in the column matrix q and the scalars
qit . . . , 4V in the column matrix q; the comma convention is used
for partial differentiation (so that T,q and T,q are v x 1 matrices) ;
Q is the v x 1 matrix of generalized forces defined by

Q^jR^f, f c = l , . . . , v (2)
where R is the inertial velocity of a differential element
subjected to force di ; / is an m x 1 matrix of Lagrange multipliers,
and A is an m x v matrix appearing in constraint equations having
the simple or Pfaffian form

Q (3)
for some A(q, t) and B(q,t). Equations (1) and (3) comprise a
complete set of equations, but they are restricted in that they
are formulated in terms of generalized coordinates, which by
definition comprise a set of scalars the full knowledge of which
is sufficient to establish the complete state of the dynamical
system as a function of time. Equations of motion may be less
complex in form arid more readily solved when expressed in terms
of quantities representing linear combinations of generalized
velocities, such as the scalars ult . . . , uv in the matrix equation

u=WTq + w (4)
where W and w may depend upon q j , . . . , qv and t. The scalars
Ui,...,uv may not be derivatives of generalized coordinates ; they
are sometimes2 called derivatives of quasicoordinates. After
transposition of Eq. (4), it becomes apparent that W may be
expressed as

W = u,tT (5)
Equations of motion equivalent to Eq. (1) can be formulated in
quasicoordinate form as
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W-1{(uT-wT)W-lW^T.u}-W-lT^ = W-1(Q-ATX) (6)
with the following notational conventions : T is the kinetic energy
expressed in terms of u and q ; the expression within braces is
the /cth element of a v x 1 column matrix ; the expression within
square brackets is the element of a square (v x v) matrix in the
rth row andjth column. Equation (6) is somewhat more general
than the form of Lagrange's quasicoordinate equations normally
encountered,1'2 although its proof is straightforward.5 This level
of generality is uninspiring for obvious reasons ; unless some
simplification is introduced to eliminate the necessity of inverting
W either numerically at each integration step or literally in
advance of integration [in addition to the inversion necessitated
by time- varying coefficients of u arising from d(T,u)/dt], Eq. (6)
is going to be even uglier than Eq. (1).

The most obvious specialization of Eq. (6) results from
replacing Eq. (4) by u = q; then Eq. (6) reduces to Eq. (1). A
more useful specialization of Eq. (6) arises when Eq. (4) is
replaced by

t Also known as the Boltzmann- Hamel equations.


